

International Journal of Advances in Engineering and Management (IJAEM)

Volume 4, Issue 5 May 2022, pp: 1437-1442 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-040514371442 Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 1437

Min-Max Algorithm

Raunak Chaurasia, Siddharth, Rohit Gupta, Vivek Yadav

--

Submitted: 15-05-2022 Revised: 20-05-2022 Accepted: 25-05-2022

ABSTRACT

The modern-day transformation, that is into the

digital world from an existing physical world, is

brought with the help of Information

Technology.When it comes to various fields,

especially in terms of games, the transformation

has developed and has been vital. With the help of

the paper, the aspect of involvement of Artificial

intelligence, in games involving physical objects

like mahjong, chess, cards and even dominoes,

which are quite popular in public. With the help of

this paper, we will discuss over Min-Max

Algorithm while discussing its applications too.

The advantages as well as different ways of

improving the algorithm will be discussed along

the path too.

Index Terms: Artificial Intelligence, games, min-

max, information technology

I. INTRODUCTION
Let’s assume, the individual is planning

to play a game with his/ her friend. Here, the bar

or the level of ”performance in the game” is

monitored by a numeric value, that can be

observed as increasing when, the individual gets

closer to ”winning the game”, compared to the

rival, while, it decreases when the rival is closer

to ”winning the game”. It is with this setting, that

one can observe the individual, increasing his/her

score (by maximising the score) while the rival,

trying to decrease the individual’s score (by

minimising the same).

This situation, calls for an algorithm,

which can make decisions(good in nature); leading

to winning the game. The modelling takes play in

the following manner: two(2) entities i.e. functions

will be used, for calling each other, while one

works on maximising the score, while the other

works totally opposite to it, i.e. minimising. In

layman’s language the functions will be mimicking

the players.

The algorithm is an amazing example of

AI, which isn’t equivalent to ML. Actually, ML is

actually a subcategory of AI. ML isn’t involved in

some of AI techniques. The algorithm, also referred

as ” Mini-Max” makes the machine(computer)

behave much more intelligently but, with the

drawback of not being able to learn anything.

Despite such drawback, it turns out to be quite

functional in many games.

The algorithm is usually useful in a turn-

based game, moreover, involving 2-players. The

minimax algorithm helps in decision- making, with

the main objective being: to the best possible and

optimal move.In the algorithm, one is called

maximiser, while the other is referred as

minimiser. When an assessed score is assigned to

the game board, one player tries to choose a state

with maximum score while the other tries

completely opposite, i.e. choose the state with

minimum score.

The concept used here, is often referred

as ”Zero-Sum Concept”. It is with this concept,

where the total utility score is found to be divided

among the players. Since, the concept uses such

concept, an increase in score of an individual,

affects the score of others, that is decrease in their

score. It is due to this phenomena, that the total

sum of the score turns out to be zero always. The

game ends when one of the player wins while the

other loses. Examples of such games are chess, tic-

tac-toe, checkers and poker.

II. FORMULATION OF GAME

PROBLEM
The game consisting of participation of 2 players,

one being MAX, while the other being MIN;

given that the MAX player is the first to take the

turn, the search problem can be defined as:

• Initial State: The current board position

• Player: The active user/ individual, who plays

the move

• Successor Function: A list or set of all legal

pairs, where the pair being (move,state)

• Goal Test: Represents the terminal states, i.e.

whether the game has ended or not

• Utility Function: Provides us with the

numerical value for the terminal state, i.e.

win or draw or lose The game tree is

formulated by summing up of details like

initial state and legal moves.

International Journal of Advances in Engineering and Management (IJAEM)

Volume 4, Issue 5 May 2022, pp: 1437-1442 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-040514371442 Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 1438

Fig. 1: Example of a game tree for chess

III. DESCRIPTION OF MINIMAX
In simple words, the 2-player game

taken into consideration is Chess. So, the players

i.e. Max and MIN keep on taking turns, one after

the other, which can be represented using a tress

of decisions. Let’s look at an example:

As per the Fig. 2, the decisions are

represented using nodes, except the ones present at

the end(terminal nodes). The decision for the move

to be chosen, is taken by the individual. It is in

this example, that we ought to select from only 2

movements, but, in actual case scenario, we can

have any no. of movements whose no. is found to

differ from node to node based upon on the state

of the present situation.

Fig. 2: Simple Example

• Current state is represented by depth-0 i.e.

the top most node. It is the position where,

the decision of the next move will be made. It

is the MAX player, who will initialise with

what we actually want to do: that is

maximising the score. Being a smart player,

the MAX player thinks about how the other

player(MIN) would respond to the move

selected by him, in place of just selecting out

of the possible moves.

• Now, MAX calls MIN, asking him what

move would he play if MAX chose either the

left or the right one.

• On the basis of moves which MIN states he

would play for both(left or right), the MAX

will choose the move, which provides him

with the maximised score.

• This leads to the question, on how MIN will

choose his move, in order to minimise the

score. The answer being quite simple, he will

ask MAX about the same, i.e. what

movements would he choose as a response, if

MIN chooses any of the possible choices of

moves. Here, the only twist being, the MIN

will do completely opposite, that is make a

choice which minimises the score.

• This leads into formation of a big tree that

has recursion fashion until they reach the

last layer of depth i.e. terminal nodes.

• The terminal state is preferably regarded as the

state at which, the game will end. Since, the

computational expense of exploring all the

possible moves, until the end of the game is

found- is very high with the processing time

being too long. So, to avoid the same, the

maximum depth is set. The state would be

considered terminal, when the game is either

over or the depth limit (maximum depth level)

is reached.

• The terminal states for Fig. 2 are the ones

International Journal of Advances in Engineering and Management (IJAEM)

Volume 4, Issue 5 May 2022, pp: 1437-1442 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-040514371442 Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 1439

present on the bottom i.e. at depth level 2.

So, the question arises, what happens at

terminal nodes. The player irrespective of

whosoever it is that is MIN or MAX, won’t be able

to call the other player i.e. use the same strategy.

It is with the help of these terminal nodes, that

calculation of score for the game is carried out.

Estimating the numeric value of score based on

the current state of the game might not be an

obvious choice, but, is a necessity in the

algorithm.

In the example that we have taken, the terminal

nodes are the ones, which are numbered as 1,2,3,4.

The only possible option that can be opted by the

Max player, is to return these scores over to the

previous level, where the Min was calling.

It is through this process, that we will get to the

following position:

Fig. 3: Position-1

The options which are chosen by MIN are

marked with the help of an arrow. This leads to

propagation of score i.e. numeric values from

depth level-2 to depth level-1(MIN’s level).

After obtaining the score on depth level-1, MAX

will be able to perform his move, i.e. on level-0:

As shown in Fig. 4,

Fig. 4: Position-2

The most optimal move that can be

carried out, is the one represented by right edge

of the respective top-node, resulting in score of

numeric value of atleast 5(originated from node 1

at terminal node).

The word ”atleast” is used as the minimax-

algorithm runs, stating that both the players(MIN

and MAX) are choosing the best move. But if the

opponent turns out to be worse than MIN, a

better score will be achieved.

IV. IMPLEMENTATION
The tree provided or generated above, is just a mere

example to describe it intuitively. The computer

isn’t required to construct such tree explicitly. The

functions which are needed in this algorithm are:

min(to minimise the score) and max(to maximise

the score).

f u n c t i o n max (s t a t e) :

i f i t i s t e r m i n a l (s t a t e) :

return (NULL, e v a l u a t e (s t a t e))

(max s t a t e , maximum score) = (NULL,

− i n f i n i t e)

f o r c h i l d in s t a t e . c h i l d r e n () : (, s c o r

e) = min (c h i l d)

i f s c o r e > maximum score :

(max s t a t e , maximum score) = (c h i l d

, s c o r e)

return (max s t a t e , maximum score)

the max() is responsible for returning a tuple, that

consists of child state at the first position while, the

other position is the estimated score which will be

achieved by choosing that state. The child state is

responsible for maximising the score here. the

min() is a function returning complete analogue

quantity to the max() function.

f u n c t i o n min (s t a t e) :

i f i t i s t e r m i n a l (s t a t e) :

return (NULL, e v a l u a t e (s t a t e))

(m i n s t a t e , minimum score) = (NULL,

i n f i n i t e)

f o r c h i l d in s t a t e . c h i l d r e n () : (, s c o r

e) = max (c h i l d)

i f s c o r e < minimum score :

(m i n s t a t e , minimum score) = (c h i l d

, s c o r e)

return (m i n s t a t e , minimum score)

Now, we will be adding a decision() function,

that takes the current state as an input and

provides the state that will give us the maximised

score in return.

f u n c t i o n min (s t a t e) :

(max s t a t e ,) = max (s t a t e)

return m a x s t a t e

The evaluate() is a function, that will assist in

predicting the score of the state provided as an

International Journal of Advances in Engineering and Management (IJAEM)

Volume 4, Issue 5 May 2022, pp: 1437-1442 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-040514371442 Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 1440

input.

V. PROPERTIES OF ALGORITHM
• Complete: It is ought to find the solution(if it

exists), from the finite search tree.

• Optimal: It turns out to be optimal, if the

choices of both players turn out to optimised.

• Time Complexity: Since it is observed to

follow Depth- First Search for traversing

through game tree, complexity is found to be

O(b
m
), where ”b” is the branching factor and

the maximum depth of tree is defined by

”m”.

• Space Complexity: It is similar to the

Depth-First Search ,i.e. O(bm)

VI. IMPROVEMENT
For large number of problems, it is found

that construction of an entire tree based upon

decisions isn’t feasible. So, in practice, a limited(in

terms of depth) tree is developed. Also, the

evaluate() function is used, to determine the level

of goodness of current state, for the player.

As pointed out before, the computational

time for the limited game tree is very high, due to

high branching factor.

So, fortunately, without exploring each

and every node, there’s still a way of finding the

optimal move. It is by following some basic rules,

skipping of some of branches could be allowed,

that won’t have any affect over the final

output/result. This phenomena is referred to as

pruning. A variant for the minimax- algorithm is

Alpha-beta pruning. Let’s take the following

example:

So, now the question which comes to the

mind, is, whether we need to examine all the

nodes present within the tree or not. It is with the

help of this improvisation, i.e. Alpha-Pruning

strategy that ignores some branches of the tree

which are known to play no major role in making

the optimal decision, prior to the time of

exploring. As the strategy states, 2 parameters are

used in the algorithm, i.e α and β.

It is in this method, that we propagate

the established score of the node in upward

direction, i.e. to its parent node in the tree. We

utilise the score to set the upper or lower bound

of the result at the parent node.

Fig. 5: Example Considered

VII. ANALYSIS WITH EXAMPLE
For instance, when we take our tree, while

evaluating the nodes (i.e. from left to right), we are

able to establish that the numerical value or the

score of terminal node(i.e. leftmost, here value

being 4), we are able to state that the result from

the parent node, can’t be greater than 4. It is

because of the fact that the parent node is a

”MIN” due to which reason, if the value is 4, the

value as an output couldn’t be chosen as

something much larger.

Fig. 6: Position considered

But actually, it is a bit early, i.e. to state

that the information is of much help. Now,

evaluation of the other node is carried out. Now,

we find that the value associated with the

parental node is equal to 3. Due to this

information, now, we can state that the top node

cannot be smaller than 3, turning out to be an

important fact.

Fig. 7: Position after visiting another node

International Journal of Advances in Engineering and Management (IJAEM)

Volume 4, Issue 5 May 2022, pp: 1437-1442 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-040514371442 Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 1441

On continuing the evaluation, we

observe one of the score of terminal node turned

out to be 2, stating that the value for parent being

<=2. Now the question arises, whether we need

to evaluate the last node or not. Since, from the

previous nodes, it was clear that the top most node

could either have 3 as its least possible score, but,

from the right branch, it is found that the value

cannot be more than 2. So, due to the same

reason, we will ignore the right most branch at

depth level-1.

The small example, where only one terminal node

was skipped, might not seem to have a huge impact

i.e. a great improvement. But, such branch in a

larger tree, might hold a sub-tree which might

be larger in terms of depth. In our

Fig. 8: Position after continuing evaluation

Fig. 9: Position after evaluating right branch

case, we were able to skip only one of

the sibling node out of the right-most branch, but

there’s quite a possibility that, that node turns out

to be a bunch of nodes, which would’ve been

skipped too. For instance, if the branch(right) had

2,1,0 as the terminal nodes,after travelling through

node with 2 as its score value, we could have

skipped 1 and 0.

It is on the basis of the ordering of the

terminal nodes, that the no. of nodes that will be

skipped, will be determined. It is due to the same

reason, in α - β pruning, scores were reversed to

4,3,2,1 from 1,2,3,4 i.e. not assigned randomly.

When ascending order is observed, worst case

scenario is found, where no pruning could be

performed. But with the help of α - β pruning, that

the minimax algorithm is able to parse twice as

deep when compared with no pruning for the

same period of time.

VIII. PSEUDO-CODE FOR IMPROVISED TECHNIQUE
f u n c t i o n max (s t a t e) :

i f i t i s t e r m i n a l (s t a t e , a lpha , b e t a) :

return (NULL, e v a l u a t e (s t a t e))

(max s t a t e , maximum score) = (NULL, − i n f i n i t e)

f o r c h i l d in s t a t e . c h i l d r e n () :

(, s c o r e) = min (c h i l d , a lpha , b e t a)

i f s c o r e > maximum score :

(max s t a t e , maximum score) = (c h i l d , s c o r e)

i f maximum score >= b e t a :

break

i f maximum score > a l p h a : a l p h a = maximum score

return (max s t a t e , maximum score)

Alpha referred in the pruning technique, is

the biggest lower bound amongst the MAX parent

nodes while the Beta is the smallest upper bound

amongst the MIN parent nodes. While considering

Max function, through the iterations over child

nodes, updating of alpha value to the max. score

is carried out. If the maximum score is found to

be greater than beta, it indicates that there exists a

parent Min node, which won’t choose the current

branch, thereby exploring the remaining child

International Journal of Advances in Engineering and Management (IJAEM)

Volume 4, Issue 5 May 2022, pp: 1437-1442 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-040514371442 Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 1442

nodes. The analog is carried out in min function.

f u n c t i o n min (s t a t e) :

i f i t i s t e r m i n a l (s t a t e , a lpha , b e t a) :

return (NULL, e v a l u a t e (s t a t e))

(max s t a t e , maximum score) = (NULL, i n f i n i t e)

f o r c h i l d in s t a t e . c h i l d r e n () :

(, s c o r e) = max (c h i l d , a lpha , b e t a)

i f s c o r e < minimum score :

(m i n s t a t e , minimum score) = (c h i l d , s c o r e)

i f minimum score <= a l p h a :

break

i f minimum score < b e t a : b e t a = minimum score

return (m i n s t a t e , minimum score)

The +/- infinite is used within the decision function(first call being max()), to initialise the algorithm,

thereby taking care of the factor, that the output score isn’t restricted.

f u n c t i o n min (s t a t e) :

(max s t a t e ,) = max (s t a t e , − i n f i n i t e , i n f i n i t e)

return m a x s t a t e

IX. CONCLUSION
Minimax Algorithm turns out to be one of

the most used/popular algorithms when it comes to

computer board games. The applications are

focused more on turn-based games. If information

regarding the game is known to the players, the

algorithm turns out to be the best choice.

However, if the branching factor is found

to be very high(for eg. GO), the algorithm doesn’t

turn out to be quite that beneficial as the time

required for processing is quite high. But, with a

given proper implementation, the AI can turn out

to be pretty smart.

ACKNOWLEDGMENT
We would like to appreciate all those who

provided me the possibility to complete this term

paper. We acknowledge with thanks, the support

and guidance rendered by our faculties in the

A.I. field. We also appreciate the support and

suggestion given by my friends.

We are extremely grateful to our family members

for the support and encouragement to help us

complete this term paper.

REFERENCES

[1] https://arxiv.org/abs/math/0501315

[2] https://arxiv.org/abs/math/0609825

[3] https://arxiv.org/abs/0705.2404

[4] https://towardsdatascience.com/understandin

g-the-minimax-algorithm-726582e4f2c6

[5] https://www.cpp.edu/

ftang/courses/CS420/notes/adversarialsearch

.pdf

[6] https://www.javatpoint.com/mini-max-

algorithm-in-ai

[7] https://www.baeldung.com/java-minimax-

algorithm

http://www.cpp.edu/
http://www.cpp.edu/
http://www.javatpoint.com/mini-max-algorithm-in-ai
http://www.javatpoint.com/mini-max-algorithm-in-ai
http://www.javatpoint.com/mini-max-algorithm-in-ai
http://www.baeldung.com/java-minimax-algorithm
http://www.baeldung.com/java-minimax-algorithm
http://www.baeldung.com/java-minimax-algorithm

